COMPUTER SCIENCE DEPARTMENT AL a L-BAYT UNIVERSITY	مربعة أل اليوم	TIME ALLOWED: 50 MINUTES Maximum Marks: 20 Marks				
SECOND EXAM, FALL EXAMINATION (WRITE YOUR NAME AND YOUR ROLL NO. ON 7		OPERATING SYSTEM 901332 THE RECEIPT OF THIS QUESTION/ANSWER PAPER.)				
NAME ROLL NO						

Question 1: (10 Marks)

Fill in the table below with the correct answer. Only answers in this table will be corrected.

Question No.	1	2	3	4	5	6	7	8	9	10
Answer										

- 1. Which of the following statements about semaphores is correct?
 - A. A binary semaphore can be used in the same way as a simple lock.
 - B. A semaphore is an integer count with some indivisible operations and an initialization.
 - C. Returning a resource when no process is waiting causes the semaphore value to increase.
 - D. All of the above.
- 2. Medium-term scheduling is performed ______.
 - A. typically on submitted jobs
 - B. when processes must be moved from waiting to ready state
 - C. on processes in the ready queue
 - D. None of the above are correct.
- 3. A thread control block _____ .
 - A. is managed by the parent process
 - B. contains the same information as the process control block
 - C. has the identical structure as the process control block
 - D. does not include information about the parent process resource allocation

4. When a child process is created, which of the following is a possibility in terms of the execution or address space of the child process?

- A. The child process runs concurrently with the parent.
- B. The child process has a new program loaded into it.
- C. The child is a duplicate of the parent.
- D. All of the above
- 5. The Producer-Consumer problem is related to ______.
 - A. the handling of process control blocks
 - B. the scheduling of process states
 - C. the allocation of resources to process states
 - D. Both A and C are correct answers.

- 6. Producer consumer problem can be solved using:
 - A. Semaphores
 - B. Atomic proesses
 - C. Monitors
 - D. All of the above
- 7. Threads that are part of the same process share the same stack.
 - A. True
 - B. False
- 8. With kernel-level threads, multiple threads from the same process can be scheduled on multiple CPUs simultaneously.
 - A. True
 - B. False
- 9. With producer/consumer relationships and a finite-sized circular shared buffer, producing threads must wait until there is an empty element of the buffer.
 - A. True
 - B. False
- 10. Deadlock can be avoided by using semaphores instead of locks for mutual exclusion.
 - A. True
 - B. False

Question 2: (3 Marks) Shortly define the following: 1. Race Condition

- 2. Deadlock
- 3. Starvation

Question 3:

A. Compare user threads and kernel threads. (4 Marks)

B. Compare between Direct Communication and Indirect Communication among processes. (4 Marks)

Question 4: (6 Marks)

Processes go through the following states in their lifetime.

Consider the following events and answer the questions that follow. Assume there are 5 processes, all either in the read or running states initially. Assume the processes are using a single processor.

- At time 5: P1 executes a command to read from disk 3.
- At time 15: P3's time slice ends.
- At time 18: P4 executes a command to write to disk 3.
- At time 20: P2 executes a command to read from disk 2.
- At time 24: P3 executes a command to join with P5.
- At time 33: An interrupt occurs indicating that P2's read is complete.
- At time 36: An interrupt occurs indicating that P1's read is complete.
- At time 38: P5 terminates.
- At time 48: An interrupt occurs indicating that P4's write is complete.

For each time **22**, **37** and **47**, identify which state each process is in. If it is waiting, indicate what it is waiting for.